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Preface

In 1978 an article in the Journal of Computational

Physics (Ref 6) evaluated numerical methods for elliptical

partial differential equations. The results showed the

method of weighted residuals used with finite element

analysis yielded more accurate results in less computer

time than finite difference methods. Dr. Kaplan of the

Air Force Institute of Technology, Physics Department, and

Dr. Kessler of the Air Force Materials Laboratory decided

to investigate the method of weighted residuals for numer-

ical solution of the heat equation. Specific application

would eventually be to the transient heat equation for

bodies of axial symmetry with the goal of reduced computer

time for solution. This thesis represents a first step in

that investigation by studying the method of weighted

residuals applied on the whole domain of interest as a

numerical method.

Thanks are due to Dr. Kaplan for his unfailing encour-

agement and guidance during the research quarters. Thanks

are also due to Sally Lindsay who typed this manuscript.

Her experience and professional approach did much to present

the finished product in its best light. Last, my greatest

thanks and appreciation are due to my wife and infant

daughter for their personal sacrifices during a time which

proved to be one of great personal adjustment and turmoil.

Robert E. Naegeli
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Abstract

The method of weighted residuals applied on the whole

domain for steady state and transient heat generation

problems was compared to finite difference methods. The

comparison consisted of the maximum absolute error from

the exact solution and computer time required for solution.

One steady state and one transient heat generation

problem were solved by collocation and Galerkin weighted

residual methods and finite differences. The least squares

weighted residual method was also used for the steady state

problem. Both problems were one dimensional and had

Dirichlet boundary conditions. Integrals for weighted

residual methods were evaluated analytically to produce

recursion relations. The transient problem was solved by

the reduction to ordinary differential equations method for

weighted residuals.

The Galerkin method was fastest to a given accuracy

for both problems evaluated. The accuracy of Galerkin and

other weighted residual methods was greater than finite

differences after a point at low solution accuracy. This

crossover point was typically two to three digits of accu-

racy. The polynomial trial functions used for weighted

residual solutions exhibited a numerical instability for

solutions of 10 terms and over increasing the maximum abso-

lute error. Orthogonal collocation and weighted residuals

on finite elements were recommended as alternate methods.

vi
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INVESTIGATION OF THE NUMERICAL METHODS OF
FINITE DIFFERENCES AND WEIGHTED RESIDUALS

FOR SOLUTION OF THE HEAT EQUATION

I Introduction

The method of finite differences has long been used for

numerical solution of the heat equation and other differen-

tial equations similar to it. One example is the diffusion

equation of nuclear engineering. Another method, the method

of weighted residuals used with finite elements, has pro-

duced results of equal accuracy at a fraction of the compu-

ter time (Ref 6:323-350). These results were obtained for

problems of structural stress which are similar to the

steady state heat equation. This paper will investigate the

method of weighted residuals (MWR) applied over the whole

domain of the problem to see if it has similar advantages

over finite differences.

The objective of this study is to compare and evaluate

the finite difference method and the method of weighted

residuals on the whole domain for the steady state and

transient heat equations. The basis of the comparison will

be accuracy of solution and computer time required. For

this comparison the MWR will be used on the whole domain of

interest and not finite elements. One steady state and one

transient problem are solved using both methods and the

results compared. Both problems are in one space dimension

. ..1 - II I



of a cartesian coordinate system with Dirichlet boundary

conditions.

The paper consists of chapters on the theory of MWR and

finite differences, the problems chosen, results, and con-

clusions. The theory chapter discusses the MWR for steady

state and transient problems and finite differences. In the

problems chapter, the problems are discussed and the MWR and

finite difference solutions are developed. The results and

comparisons chapter lists the results of comparison and

problems encountered. Last, the conclusion chapter gives

the overall conclusions of the investigation.
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II Theory

The MWR used on the whole domain of interest constructs

a series function which approximately satisfies the differ-

ential equation and boundary conditions over the domain.

The finite difference method, on the other hand, produces a

table of values which approximate the solution to the dif-

ferential equation and boundary conditions at the mesh

points. Values of the solution between mesh points must be

obtained by interpolation for finite differences, but are

obtainable directly from the MWR series solution for any

point in the domain.

The comparison between methods will be made by measuring

the time to attain various accuracies. Accuracy is increased

by finer mesh spacing for finite differences and more terms

in the series solution for MWR. This chapter will cover the

MWR and finite difference methods to be compared.

The Method of Weighted Residuals

The basic idea of the MWR is a series of complete and

linearly independent trial functions which is made to satisfy

the differential equation and boundary conditions (Ref 3:35).

The series is substituted into the equation and boundary

conditions and the error required to vanish in an average

sense.

Take the case of general boundary conditions for the

steady state problem:

- -



LU(x) = f(x) in Region D (1)

KU(x) = (s) on Boundary S (2)

where L is the differential operator and K is the boundary

condition operator. The solution, U(x), is approximated as

N
UN (x) = a. i (X-) (3)

i=l

where a. are undetermined constants and W(x) are the trial

functions which make up the trial solution expansion (Ref 8:

258-261, 3:8). Substituting UN(X) for U(x) in Eqs. (1) and

(2) yields the residual, R:

LU N(X) - f(x) = R (4)

KU N (x) - f(s) = R (5)

Since UN (x) is just an approximation, the equations may not

balance. The error or residual of U (X) instead of U(x) in

Eqs. (4) and (5) is integrated with a weight function to

minimize that error:

fW (LUN(X) - f(x))dD = 0 j=l,...N (6)

fwj(KUN(X) - 4(s))dS = 0 j=,...N (7)

The weight functions, wj, may be determinea in several ways

and will be discussed later. There must be N weight func-

tions to solve for the N undetermined constants.
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The undetermined constants in U N(x) are found by solv-

ing Eqs. (6) and (7) simultaneously. Substituting the

expansion for UN (x) of Eq. (3) into Eqs. (6) and (7) yields

for j 1 ...N

N
a,=i a. wjLi(x) dD - jw.f(x) dD = 0 (8)

i=J. D D()

N a i Kfw.K (x)dS - fwjp(s)dS = 0 (9)

i=l 3.S S

Equating Eqs. (8) and (9) yields for j = 1,.. .N

N
E ai [wjL i (x) dD - jK i(x)d

= Dwjf(x)dD - sWjf(s)dS (10)

Thus Eq. (10) becomes an N by N matrix problem of simultane-

ous equations in a.

A a = b (11)

where a is the vector of arbitrary constants ai, where b is

the vector of integrals not involving ai for j = ...

b = f wf(x)dD - fwj(s)dS (12)

and where A is the coefficient matrix for j = 1,...N

N I
AfE Li(x)dD Koi(x)d (13)i=l D i KS

S-2 f S1



Note that an underlined capital letter symbolizes a square

matrix and an underlined lower case letter symbolizes a

column matrix or vector. Once the system of simultaneous

equations has been solved for the ai, the approximate solu-

tion has been determined for the whole domain.

Types of Method Application. There are three ways in

which MWR is generally applied. They are boundary methods,

interior methods, and mixed methods (Ref 3:11).

In boundary methods the trial functions satisfy the

differential equation exactly, but not the boundary condi-

tions. MWR is then applied on the boundary conditions only.

Then Eq. (4) for differential equation residual is satisfied

exactly and those integrals in Eqs. (6) and (8) total zero.

Last, Eq. (10) which specifies the matrix equations to

solve for unknown constants becomes

a. ([)d = -. (s)dS (14)i=l i jKs Wi SI

For interior methods the trial functions satisfy the

boundary conditions so MWR is applied on the differential

equation only. Then as with boundary methods Eqs. (7) and

(9) are no longer needed and Eq. (10) becomes for j = 1,...N

E ai.wjL i(x)dD] = fwjf(x)dD (15)i=l D jD ) d

The problems studied in this paper are solved with interior

MWR.

6



Last in mixed methods the trial functions may satisfy

neither the differential equation nor boundary conditions.

The trial functions may satisfy some parts of either. A

boundary condition that is usually satisfied is the value of

the function on the boundary (Ref 3:28-30). Eq. (10)

remains the same for mixed MWR.

Types of Weighting Criteria. Several types of criteria

for minimizing the residual exist. Each criteria has an

associated set of weight functions which are used to inte-

grate the residuals in MWR.

The weight function in the collocation method is the

Dirac delta function (Ref 2:148):

w = (x - xj) (16)

The delta function f~rces the value of the reqidual integral

of Eqs. (6) and (7) to equal zero at the collocation

point specified in the delta function. For a trial

function expansion of N terms, N points are needed to gen-

erate N equations for simultaneous solution.

Choice of the collocation points can have a definite

effect on the accuracy of the solution obtained for expan-

sions with a low number of terms. A usual practice is to

choose them evenly spaced through the region or boundary.

At any event as the residual is made zero at more and more

points, it presumably approaches zero throughout the region

or boundary (Ref 3:9). orthogonal collocation uses

7



orthogonal polynomials as trial functions and chooses the

collocation points as the roots to the polynomials to

improve the accuracy of low order expansions (Ref 3:97-98).

Also a method called least squares-collocation uses more

collocation points than constants to be determined. The

residuals are squared, added, and minimized with respect to

the constants (Ref 3:26-27). Least squares-collocation on

the boundary has been applied as a method for steady-state

and transient heat problems with arbitrary geometry and

boundary conditions in two and three dimensions (Ref 16:103-

108).

A second weighting criteria called the subdomain method

integrates the residual over N subintervals of the domain.

Then the weight function is (Ref 2:149)

1l in subdomain i
wi 0 outside of subdomain i(17)

The Galerkin method corresponds to a third criteria for

minimizing the residual. In the Galerkin method the trial

functions in the approximate solution expansion of Eq. (4)

are used as weight functions:

w. = (18)

This amounts to making the weight functions orthogonal to

the residual (Ref 2:149).

A fourth method is least squares. Here the integral of

the square of the residual is minimized with respect to the

solution constants (Ref 2:150)

8

-



f JR2 dx 2 _J R dx 0 (19)
i D i

where R is the residual, D represents the domain, and a. are1

the solution constants of Eq. (4). The weight function for

least squares is then the derivative of the residual with

respect to one of the solution constants:

w = D (20)

This weight function then becomes the a. term of the

residual.

Other weight functions than these are used. In fact

the weight function can be any complete set or N members of

it (Ref 3:11).

The criteria used for the problems in this paper will

be collocation, Galerkin, and least squares. These were

the criteria used in the paper comparing FDM with the MWR

applied in finite elements as mentioned before (Ref 6:323-

350).

Trial Functions. The trial functions provide much of

the power of MWR since they incorporate known information

into the solution. Trial functions can incorporate the

general symmetry of a problem or satisfy some of the boundary

conditions (Ref 3:35). If the boundary conditions in a

problem are of the first kind, such as Uo(X) = fo(x) =(s),

then a convenient form of trial solution is

N
U 0() = fo () + E aii(x) (21)

i=l

9



where the trial functions Wi(x) are zero on the boundary and

f (x) reduces to i(s) on the boundary. Then a problem likeo

Eq. (1) and (2) can be transformed into an interior MWR

problem. Also f (X) which represents the boundary condition

can be eliminated from the trial solution by applying the

differential operator of Eq. (1) to the trial solution term

by term. Then Eq. (1) becomes

LU (x) = Lf (X) + LU N(x) = f(x) (22)

where L is the differential operator, f (X) is defined as in

Eq. (21), and UN (x) is the new trial solution

N
U() Uo(X) - f (R) = Z a..(x) (23)
N 0 0 i 1 1i=l

Then Eqs. (1) and (2) become a problem with a new non-

homogeneous part

LU(x) = f(x) - Lf (x) (24)o

and a new boundary condition (Ref 3:30)

U()= 0 (25)

The set of functions chosen as trial functions i(x)

as in Eq. (23) must be complete and linearly independent to

represent the solution to a boundary value problem (Ref 3:

35). One such set is the polynomials. Linearly independent

and continuous polynomials have been proven complete for

homogeneous and nonhomogeneous steady state heat equations

10



in one and two dimensions (Ref 3:355-356,359,Ref 8:263-265,

273,277). In this case the solutions evolved are uniformly

convergent to the true solution. Then we can choose an

e > 0 and

jUtrue(X) - ON(XS) < E (26)

where Utrue (X) is the true solution and UN X) is the trial

solution as in Eq. (23). The property of uniform convergence

provides a test of accuracy since the absolute value of the

error should decrease for trial solutions which are expan-

sions of more terms of the set of trial functions. As more

terms are taken the trial solution should represent the

true solution more accurately. However, the exact choice of

the trial functions will influence accuracy in low order

expansions and affect the rate of convergence (Ref 3:

34-36).

Trial functions for time dependent problems such as

the transient heat equation can be obtained using trial

functions in the space variables which satisfy the boundary

conditions multiplied by unknown functions of time:

N
U (x,t) = Z Ai(t)4i(x) (27)
N i=l1

where Ai(t) is the unknown function of time (Ref 3:36). The

time functions are found by applying MWR and the initial

conditions as illustrated in the next section (Ref 3:44-45).

Transient Problems. The MWR solution methods developed

earlier in this chapter were for steady state problems only.

11(



For transient problems using the trial functions of Eq. (27)

the solution process is different. The dependence of the

trial functions on time as well as a multiplying constant

must be determined. Applying the MWR to the boundary condi-

tions and differential equation determines the time depend-

ence. Then applying the MWR to the initial conditions with

time equal to zero in the trial solution determines the

constant multipliers (Ref 3:44-45). Such a treatment is

called reduction to ordinary differential equations.

The determination of the time dependence of the trial

solution for the transient heat equation requires solving

simultaneous ordinary differential equations in time. The

transient heat equation in dimensionless form with boundary

and initial conditions in addition is

V2 U(x,t) + f(x,t) - 3U(x,t) (28)at

where U(x,t) is the dimensionless temperature, f(x,t) is a

heat generation term, and V is the Laplacian. Note that

heat generation depending on temperature is not considered

here. If the trial function of Eq. (27) which satisfies

the boundary conditions is substituted into Eq. (28), the

residual, R, is

A(t)2 (x) + f(x,t) - _ ai )] = R (29)

Applying a MWR weight criteria to this residual yields for

j =

- 12



N 2N a
SA(t) WV W(x) dD E 7 A (t) w-p.(x)dDili a i=l

- fwj f (x, t) dD (30)

where w. is the weight function for the criteria used. Eq.

(30) can be expressed in matrix form as

G a = H d a - b(t) (31)

a- - ~ - t

where G and H are the coefficient matrices representing the

integrals in Eq. (30), where a is the vector of Ai (t), and

where b(t) is the vector representing the last integral of

Eq. (30) (Ref 4:735-736). If the inverse of H can be found,

Eq. (31) can be reduced to

d _ -I Ga H-I_32
d- a _H G a + _ b(t) (32)

where H-I is the inverse of H. Eq. (32) is a system of

simultaneous, linear, ordinary differential equations for

i = 1,N

dAi t)

dt = a.1 + ... + aNA N (t) + fi(t) (33)

where A. (t) is an element of vector a, where a! ... a' are

elements of matrix H G, and f. (t) are elements of vector

H- b(t) (Ref 9:218-219).

The fi (t) term in Eq. (33) makes it a nonhomogeneous

system of first order differential equations. If the

heat generation term f(x,t) in Eq. (28) is a function

of position only, the problem may be separated into a

13
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steady state and a homogeneous transient problem. Substitut-

ing a new variable for temperature in Eq. (28) and its bound-

ary and initial conditions can separate the problem:

T(x,t) = U(x,t) + V(x) (34)

where T(x,t) is the new temperature variable, U(x,t) is the

temperature for the transient problem, and V(x) is the tem-

perature for the steady state problem (Ref 11:152-153). The

steady-state problem can be solved by MWR developed earlier

in this chapter. The homogeneous transient problem is then

solved by the MWR reduction to ordinary differential equa-

tions outlined in this section.

For the homogeneous transient problem, Eq. (28) reduces

to

V2 U(xt) - aU(x, (35)at

U(s,t) = i(s) (36)

U(xO) = g(x) (37)

where Eq. (36) represents boundary conditions which do not

vary with time and Eq. (37) is the initial condition. The

transient problem considered in this paper is described by

Eq. (35), (36) and (37). Again.substituting the trial

function of Eq. (27) which satisfies the boundary conditions

into Eq. (35) and applying MWR leads to a statement similar

to Eq. (30) for j = ... N:

14
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N2- N aN Ai(t) (w. (x)dD = t Ai(t) f Pi(x)dD (38)
i=l D i=l j

where w. is the weight function and A (t) the unspecified
Ji

function in time. Equation (38) expressed in matrix form is

da
G a (39)

where G and H are the coefficient matrices as before and a

is the vector of A. (t). Multiplying by the inverse of H1

again yields a system of ordinary differential equations in

time which are homogeneous in this case:

dA. (t)dA - a!iAl(t) + + a! (t) (40)11 "'"

where at . a' are the elements of the coefficient matrixil " iN

H-I G as before.

The general solution to the problem of Eq. (40) is

(Ref 9:220-222,294)

Xl1t X 2t  XN t

Ai(t) = Claiile + C2ai2e + ... + CNaiNe (41)

where X... XN are the eigenvalues of the system of equa-

tions given in Eq. (39) or more specifically the matrix
-i

H G. Also the alj ... aNj are the components of the

linearly independent eigenvectors of matrix H-1 G and
C1 ... CN are the unspecified multipliers which multiply all

elements of that eigenvector. Eq. (39) is then an eigen-
X .t

value problem since the derivative of an eigenvector aije 3
)l.t i

is aijjAe 3 (Ref 9:294):

15



G a H a (42)

Forming the solution for Ai(t) is then a two-step pro-

cess. First the eigenvalues and eigenvectors of the system

of ordinary differential equations describing the problem

are found to determine the time dependence of exponential

decay of the transient solution. The last step of

determining the constant multioliers, C1 ... CN, is

analogous to the MWR for steady state problems. The trial

solution for time zero is substituted into the initial con-

dition, Eq. (37), to form a residual. The residual is then

minimized with-a weight function to yield simultaneous

equations for C1 ... CN with j = 1,...N:

N D
E A. (0) (x)dD = x)dD (43)i=l f j

where A. (0) is the time function of Eq. (27) evaluated at1

the initial time, where g(x) is the initial temperature dis-

tribution, w. the weight function, and 4i(x) the trial func-

tions. Since Ai (t) is a sum of exponentials in time, for

the initial time zero they take a specific value of one.

Each Ai (0) then becomes a sum of the eigenvector multipliers,

C ... CN and the summation can be changed to add the C1

terms from all A. (0) and the same for the other multipliers.

The matrix system then reduces to

J c = d (44)

16



where J is the coefficient matrix of multipliers, c is the

multiplier vector, and d is the vector of initial values.

Once the simultaneous equations are solved, the Ai (t) and

MWR solution is finished (Ref 9:294).

Only two of the three MWR criteria used for steady

state problems are applicable to this transient method.

Collocation and Galerkin both result in the eigenvalue

problem of Eq. (42). However, least square does not since

the resulting equations have factors of X2 as well as X.

Only the collocation and Galerkin criterias will be used

for the transient problem (Ref 2:313-314).

Nuinerical Solution for MWR

This section will outline the solution algorithms for

the steady state and transient problems.

Steady State. The numerical solution of MWR on the

whole domain of interest has been largely limited to collo-

cation methods. These methods include least squares-collo-

cation and orthogonal collocation mentioned earlier under

the section on types of criteria. Collocation offers an

advantage since no integrals need to be evaluated. Only

the values of residuals at collocation points need be eval-

uated.

Collocation, Galerkin, and least square. criterias

were used to compare MWR on finite elements with finite

differences in an article by Houstis et. al. (Ref 6:323-350).

In order to compare the results in this paper with the

17



results of Houstis, all three criteria will be used for the

steady state problem.

Evaluation of the integrals for the Galerkin and

least squares criteria presents another difficulty. A form

of numerical integration could be used to evaluate the

integrals over the domain of interest. However, since the

trial functions used are simple polynomials and the integra-

tion on one dimension only for the problems in this paper,

the integrals can be easily evaluated analytically to

develop a recursion relation for the matrix elements. The

recursion relation then needs to be evaluated only once for

each matrix element where the integrand would need to be

evaluated several times for numerical integration.

Another choice to be made is the choice of a matrix

equation solver. Since every element of the MWR coefficient

matrix will have a non-zero value, the best choice appears

to be Gaussian elimination as a matrix equation solver.

Iterative methods can be faster than Gaussian elimination

for sparse matrices, but the rate of convergence is uncer-

tain. The Gaussian elimination will be used for both MWR

and finite difference solutions.

Then the algorithm for solution of the steady state

problem for MWR consists of two .steps. First, the solution

matrices are formed from recursion relations. Then the

matrix systems are solved to obtain the defining constants

for MWR.

18



After the solution is obtained it is compared against

the true analytical solution to determine its accuracy.

Two measures of accuracy will be used. The first is abso-

lute accuracy which should decrease as the MWR solution con-

tains more terms. The second is fractional or percentage

accuracy which is most of interest in a practical sense.

The fractional error determines the number of significant

figures in the answer.

After the solutions are obtained and the accuracy is

checked for solutions with different numbers of terms, the

time to compute the solution is measured. The central pro-

cessor time of the Control Data Corporation Cyber 74/Cyber

750 computer system with NOS/BE operating system was used

to measure the solution formation time. Since the central

processor time output is only accurate to .01 seconds, the

solution for a given number of terms must be repeated several

times for accurate measurement (Ref 5:8-9).

Transient. Numerical solution of the transient MWR

problem involves solution of an eigenvalue problem and a

system of simultaneous linear equations. Solution of the

simultaneous equations will be by Gaussian elimination as

for the steady state problem. The eigenvalue problem will

be solved in its general form.

The eigenvalue problem is shown in Ea. (42) which is

repeated as EQ. (45) here

G a = H a (45)
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where H is the coefficient matrix for integrals which mini-

mize the residual terms involving the time derivative, where

G is the coefficient matrix for the integrals which minimize

the space derivative, where a is the vector of unknown time

functions, Ai (t), in the trial solution, and where X is the

eigenvalue. The vector a is the set of the N linearly

independent eigenvectors of the system and X represents the

N eigenvalues associated with the eigenvectors. The total

solution for Ai (t) is shown in Eq. (41). A subroutine which

solves the eigenvalue problem without inverting the

H matrix was selected from the IMSL program library. This

subroutine, EIGZF, allows the G and H matrices to be input

directly without inversion (Ref 10:241-256,7:EIGZFl-5).

The algorithm for computing the transient MWR solution

involves four steps. First the G and H matrices are computed

from Eq. (38). Next the eigenvalues and eigenvectors are

found by EIGZF subroutine. Then the coefficient matrices for

calculation of the constant multipliers are evaluated as

indicated in Eq. (43) and (44). Last the system is solved

for the multipliers.

As for the steady state problem, the accuracy of solu-

tion and formation time of solution must be measured. The

one MWRsolution is good for all times due to the exponen-

tial time dependence of the time function Ai (t) of Eq. (27).

Time for solution must be measured for different numbers

of terms in the MWR solution. Then accuracy at different

times is measured against the analytical solution.
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The Finite Difference Method

The finite difference method approximates the deriva-

tives of a differential equation by the ratios of differ-

ences between points in the domain of the problem. The

system of equations that results can be solved for the values

of the function in the differential equation at the mesh

points. Since the finite differences only approximate the

derivatives, the values for the function have some error

based on the mesh spacing.

The two derivatives in the steady state and transient

heat equations will be approximated by central and forward

differences. The two derivatives are the second derivative

with respect to the space variable and the first derivative

with respect to time:

a2U(x't) 6 2U(x,t) _ U(x+h,t) - 2U(x,t) + U(x-h,t)

ax 2  h 2  h 2

(46)

DU(x,t) _ U(x=t) U(x,t+k) - U(x,t) (47)
at k k

where Eq. (46) shows the second derivative with respect to

x, Eq. (47) shows the first derivative with respect to time,

where U(x,t) is the function differentiated, where h and k

are the distances between mesh points in x and time respec-

tively, where 6 denotes a central difference taken about the

point (x,t) where the derivative is approximated, and where

A denotes a forward difference taken from the point (x,t)
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(Ref 15:59-60). Eq. (46) and (47) are also valid for ordi-

nary derivatives.

For the steady state problem the unknown value of the

function at all mesh points will be found simultaneously.

The differential equation using finite difference approxi-

mations is formulated for each mesh point. Then the system

of equations is solved simultaneously by the same Gaussian

elimination method used for MWR.

Explicit methods will be used for the transient prob-

lem. In explicit methods, the differential equation with

finite difference approximations is used to compute the

value at a next point from values at known points.

Since the difference expressions of Eqs. (46) and (47)

are derived by combining Taylor series expansions of the

function to be differentiated, the error in the expressions

can be found by examining the expansion terms not used in

the expression. The central difference then has an error

proportional to h2 or of order h2 , O(h2 ), where h is the

mesh spacing. The first forward difference has an error

O(k) where k is the mesh spacing. The mesh spacing deter-

mines the error then and closer mesh spacing will give more

accurate results. Also note that for an equation that uses

two difference expressions, such as the transient heat equa-

tion, the error is the sum of the two errors (Ref 15:59-60,

108).
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III The Problem Set

One steady state and one transient heat problem are

solved by the MWR on the whole domain and by the finite

difference method. Both problems are in one space dimension

with Dirichlet boundary conditions. This chapter discusses

the problems and their solutions. To prevent any advantage

between methods all MWR and finite difference solutions were

programmed in Fortran 4 Extended. The programs were also

compiled with the same compilation option, option 1.

Steady State Problem

For the steady state problem consider for 0 x 1

d U(x) + U(x) + x 0 (48)

dx
2

U(0) = U(1) = 0 (49)

where Eq. (48) represents the heat equation, where Eq. (49)

is the homogeneous Dirichlet boundary condition, where U(x)

is temperature, and where U(x)+x represents a heat genera-

tion term. Removal of the thermal conductivity constant

factor which is normally shown multiplying the second deriv-

ative of temperature and reduction of the equation to this

form requires a very special heat generation term. However,

study of the equation in this form provides a convenient

closed form solution (Ref 8:269):

U(x) sin(x) x (50)
sin(1)
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For the MWR solution to the steady state problem a poly-

nomial trial function which satisfies the boundary conditions

and has been proven complete for similar problems is (Ref 3:

356)

= x (l-x) x i xi+l (51)

Then the trial solution UN(x) will be

- N i. i+1
UN(x) =lZ a.(x - xi ) (52)

where a. are undetermined constants. Substituting Eq. (52)

into Eq. (48) yields the residual, R, of the differential

equation for this interior method application of MWR:

N i-2 i1 i i+l]

R E ai[i(i-1)x - i(i+l)x + x x + x

i=l1
(53)

Simultaneous equations can now be constructed from the

residual by integration with the weight functions of the

three MWR methods to be evaluated, for j = 1,...N:

N wj[i(i)x i  - i(i+l)x + - x' l3dx

i=l o

1

S-f W x dx (54)

0

where w. i- Lne weight function and Eq. (54) represents one

of the N simultaneous equations. Using the weight functions
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of Eq. (15), (16), and (17) the integrals are evaluated to

give recursion relations. The recursion relations evaluated

for values of i and j provide the matrix elements for the

matrix problem A a = b where A is the coefficient matrix

defined by the left side of Eq. (54), b is the vector

defined by the right side of Eq. (54), and where a is the

vectcr of undetermined constants, a. The specific weight

function, wj, used defines the rows of A and the ith term

of the trial solution defines the columns. Once the matrix

problem has been solved for a the MWR solution is finished.

Recursion relations for the collocation method are the

residuals:

A(j,i) = i(i+l)x -1 i(i-l)xi + x. - (55)

b(j) x (56)

where x is the 9th of the N equally spaced collocation

points, A(j,i) is an element of the matrix A, and b(j) is

an element of vector b. Also the recursion relations for

the Galerkin method using the trial functions as weight

functions are

A(j,i) - [(i+l)i + i(i-l)] + 2 _ 1
(j+i) (j+i+2) (j+i+3)

i(i-l) i(i+l) + 1
(+i-i) (j+i+l)

1 (8
b (j) = (j+2) (j+3) (58)
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Last, the recursion relations for the least squares method

with terms of the residual as weight functions are

A(ji) = j(j-l)i(i-l) - [j(j-l)i(i+l) + i(i-l)j(j+l)]

(j+i-3) (i+j-2)

+ [9 (j-l) + 9 (j+l)i(i+l) + i(i-l)](i+j-l)

_ [(j-l) + j(j+l) + i(i+l) + i(i-l)]
(i+j)

+ [i(i+l) +1+ j(j+l)] 2 + 1

(i+j+l) (i+j+2) (i+j+3)

(59)

1
b(j) = 1 - (j+2) (j+3) (60)

The A matrices resulting from the three methods have all

non-zero elements.

The finite difference solution is constructed using a

central difference approximation for the second derivative

of temperature with respect to x. The central difference

approximation of Eq. (46) for temperature as a function of x

only is

-11 = uj+l - 2Uj + uj_ 1  (61)] h 2

where the subscript j identifies the particular mesh point

of N equally spaced mesh points, where U. I is the second

derivative with respect to x, and where h is the spacing

between mesh points. Then Eq. (48), the differential equa-

tion, becomes the difference equation
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U + (2-h2 )U. - U h2 x. (62)
j-1j j+l3

where Eq. (61) has been substituted into Eq. (48) and multi-

2
plied by -h2 . With N mesh points the interval 0 to 1 of the

problem is divided into N+l spaces so h = l/(N+I). Then

the matrix problem A a = b for simultaneous solution of Eq.

(62) at the mesh points can be defined as for MWR where the

jth element of a is the value of temperature, Uj, at the jth

mesh point. The matrix A is tridiagonal with main diagonal

elements (2-h2 ), with elements of the next diagonals above

and below the main diagonal of -1, and with the other ele-

ments zero. Since the Dirichlet boundary conditions are

homogeneous, the elements of b are h2 x . Once the matrix

problem A a = b has been solved for the value of temperature

at the mesh points, a, the finite difference solution is

complete.

The systems of simultaneous equations A a = b for MWR

and finite differences will be solved by Gaussian elimina-

tion. A subroutine, LEQT1F, was selected from the IMSL

program library to perform the Gaussian elimination. LEQTIF

performs Gaussian elimination with partial pivoting, equi-

libration, and the Crout algorithm (Ref 7:LEQTlF 1-4).

LEQT1F also indi ites when solution is not possible due to

a singular matrix A and tests the solution a to insure it

agrees with matrix A to a specified number of digits.
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Transient Problem

The transient problem or initial value problem is the

problem of a wall warming up. The problem stated in dimen-

sionless form is for 0 S x s 1

a2 a
U(xt) = - U(x,t) (63)

U(0,t) = 1 U(lt) = 0 (64)

U(x,0) = 0 (65)

where Eq. (63) is the partial differential equation, where

Eq. (64) is the Dirichlet boundary conditions, where Eq. (65)

is the initial condition, and where U(x,t) is the dimension-

less temperature. The exact solution to the problem is

2 Go sin %n~rx) -n 27T2 t
U(x,t) = 1- - E e (66)

n=1

where l-x represents the steady state solution that the

whole solution decays to as time increases and where the

balance of Eq. (66) represents the transient solution

(Ref 1:93-96).

The MWR solution will be of the reduction to ordinary

differential equations form. The trial functions will be

defined as in Eq. (27) where the space part of the trial

function satisfies the boundary conditions and the undeter-

mined function of time is found to satisfy the differential

equation and initial conditions. The nonhomogeneous
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boundary conditions can be satisfied as in Eq. (21) by a

series of trial functions which is zero on both boundaries

and a leading function which reduces to the value of the

solution on both boundaries. Then we can choose a trial

function as

N A t i+l
UN (x,t) x + E A Ct)(x x (67)i=l

where UN (x,t) is the trial solution, where l-x satisfies the

nonhomogeneous boundary conditions, where the spacial trial

functions, (xi - x i+l), satisfy the homogeneous boundary

conditions, and where A. (t) is the undetermined function of
i l

time. The spacial trial function, (xi - x i+l), is the same

one used for the steady state problem.

The first step in the transient MWR solution is forming

the matrices for the matrix eigenvalue problem, G a = X H a,

where G is the coefficient matrix that corresponds to the

left side of Eq. (63), H is the matrix for the right side of

Eq. (63), a is the vector of Ai (t) time functions, and where

X is the eigenvalue. First, form the residual of the dif-

ferential equation by substituting the trial function Eq. (67)

into Eq. (63):

N i-2 i-l
0 + E A. (t)ii(i-l)x - (i+l)ix I

i=l 1

N i i+l 3Ai(t)
= 0 + E [x ax t (68)i=l
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Note that the residual of the leading term of the trial

function is zero. Thus, the problem becomes an

eigenvalue problem as in Eq. (39). The form of the time

function, Ai (t), for a problem of this type is

N xkt
Ai(t) = E C k aik e (69)

k=l

where a ik represents one element of the kth eigenvector of

a, where Ck represents the multiplier of the kth eigenvector,

and Ak is the eigenvalue associated with the kth eigenvector.

Since the leading term of the trial solution is the steady

state solution, change the form of A (t) to indicate it is

decaying in time:

N -xkt
Ai(t) = E Ck aik e (70)

k=l

Then the residual Eq. (67) becomes

N i-2i-
Z [i(i-l)x - (i+l)ix Ik

i=l

k [x i+l (71)

i=1

where ak is the kth eigenvector of a. Minimizing the

residual with the MWR weight function provides the matrices

to solve for Xk and a

N 1

Swji(i-l)x12 - (i+l)ix ] dx

01

x k  wj[xi+l x dx k (72)

0
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where w. is the weight function. The left side of Eq. (72)J

is matrix G and the right side 11 for the eigenvalue problem

G a = H a.

The two minimizing weight criteria for the transient

problem are collocation and Galerkin. The G and H matrices

for collocation are

-2, i=l

G(j,i) (73)

[ (i-1)ixi-2 - (i+l)ix - I ] , i=2 ... N

H (j ,i) = (x i +  i,j - j) (74)

where G(j,i) and H(j,i) are elements of matrices G and H and

where x. is the jth of N equally spaced collocation points on
3

the interval 0 < x < 1. The Galerkin matrices are

.2

G(ji) i(i-l) 2i + (i+l)i(j+i-l) (j+i) (j+i+l)

2 1 1
H(j,i) - (ij+2) - (i+j+l) (i+j+3) (76)

The Galerkin matrices are in general symmetric, but the

collocation matrices are not. Least squares was not used

since it has X2 terms.

After the matrices are formed the eigenvalue problem

is solved by IMSL library subroutine EIGZF which solves the

real eigenvalue problem G a = X H a for the real or
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complex eigenvalues and cigenvectors (Ref 7:EIGZF 1-5). The

routine reduces G to upper Hessenberg form and B to upper

triangular form. Then the rou2ine transforms G to quasi-

upper triargular form (upper Hessenberg with no two con-

secutive subdiagonal elements being nonzero) while keeping

H in upper triangular form. Last, the routine calculates

eigenvalues and eigenvectors through an iterative operation

(Ref 10:241-255). The IPMSL routine includes a performance

index to evaluate how well the problem was solved and indi-

cates if the routine cannot converge to one of the eigen-

values (Ref 7:EIGZF 2-3).

The possibility of complex eigenvalues and eigenvectors

requires a strategy for reducing all eigenvalues to real

and the eigenvectors to real and linearly independent. The

eigenvalues of real symmetric matrices are real so the

Galerkin method should have all real eigenvalues and eigen-

vectors (Ref 15:24). The collocation method may have some

complex eigenvalues and eigenvectors due to its nonsymmetric

matrices. A useful approximation for complex eigenvalues

is the real part (Ref 4:739-740). Since complex eigenvalues

come in conjugate pairs with eigenvectors that are also

conjugates, taking the real part of the eigenvalue results

in a repeated real eigenvalue. Two linearly independent

eigenvectors are obtained by taking the real part of the

eigenvector for one and the imaginary part for the other

(Ref 9:228-230).
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After the eigenvalues and eigenvectors have been pro-

duced and made real and linearly independent, the initial

conditions are used to find the appropriate constant multi-

pliers for the eigenvectors. The multipliers are the Ck

of the Eq. (70) form of the time function, Ai (t). The

procedure in the last two paragraphs has found the eigen-

values, Xk, and the eigenvectors, aik* Now the initial

condition of Eq. (65) is minimized with the same weight

functions to provide simultaneous equations for Ck. Sub-

stituting Eqs. (70) and (67) into Eq. (65) and integrating

with a weight function, wj, yields

w1(l-x)dx + wj[ N (x I - X )k aik e Xk(0)jd
1 k=1

f w (0)dx (77)

0

where N different w. determine N different equations, whereJ

the left side is the minimization of the trial solution of

Eq. (67), and where the right side is the minimization of

the initial value. Note time takes its initial value zero

in Eq. (77). The residual equation, Eq. (77), can be

rearranged to provide simultaneous equations for Ck by

exchanging the order of integration and summation:

N 1
NE !0Ck  Ea ik wj 1 X x+)X

a., fw(xi - xi+l) dx]

k=l =l

1

=- w (l-x)dx (78)

0
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Then the coefficients for Ck are obtained by summing the

elements of the kth eigenvector multiplied by the integral

on the left side of Eq. (78). Eq. (78) then becomes a

matrix problem, M c = m, where M is the coefficient matrix

of the left side of Eq. (78), where c is the vector of Ck,

and where m is the vector of Eq. (78) right sides. M c = m

is solved by Gaussian elimination for the multipliers, Ck'

and the solution is then complete.

The integrals of Eq. (78) are evaluated analytically

to provide recursion relations for M and m. For collocation

the recursion relations are

M(j,i) = x i - x+ (79)J J

m(j) = x. - 1 (80)

3

where M(j,i) is the integral of the (j,i) element of M,

m(j) is the jth element of m, and where x. is the jth of N
I

equally spaced collocation points. For Galerkin the

recursion relations are

1 2 1
M(j,i) = (j+i+l) (j +i+2) (j+i+3) (81)

m(j) = 27-21 1 (82)
(j+2) Cj+1) -J+3)(2

The finite difference solution for the transient prob-

lem will be constructed using an explicit four point method.

The differential equation, Eq. (64), will be approximated

with a first forward difference in time and a central dif-

ference in space:
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Sjjk + l - U3,k U j+lk jk + j-lk (83)
ht h2

x

where j is the index for mesh point location on x with uni-

form spacing of hx between mesh points and where k is the

index for time mesh spacing of ht between time levels

(Ref 15:107-108). Solving for unknown temperature, U j,k+'

gives the explicit equation

Uj,k+l = R(Uj+l,k + Ujl,k) + (1 - 2R)Uj,k (84)

where R = ht/h2 . Eq. (84) is used to solve for the tempera-

ture at a new time level repeatedly until the desired time

is reached. For the explicit method to be stable, the time

step size must obey the stability criteria ht hx/2 (Ref 15:

108). Since the difference expression error is 0(ht) +
2t

O(h2), obeying the stability criteria should re-sult in low

error with neither space nor time error dominating the total

error (Ref 15:108).
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IV Results and Comparisons

The results of MWR and finite difference solutions to

the two problems are compared with each other in this chap-

ter. The results are also compared with the article by

Houstis et.al. which compares MWR applied on finite elements

with finite differences (Ref 6).

The Houstis et.al. article compares collocation, Gal-

erkin, least squares, and finite differences for linear

second order elliptic partial differential equations. The

MWR methods used a rectangular grid to define the finite

elements and Hermite bicubic polynomials for approximation

of the solution. Solution of equations was by Gaussian

elimination by profile or frontal method. The article con-

clusions state collocation was more efficient than finite

differences for accuracy of one to four significant figures

and beyond. The measure of efficiency was accuracy of

solution and execution time. Finite differences and collo-

cation started with equal efficiency at low accuracy or,

in some cases, finite differences was most efficient at the

lowest accuracy. As accuracy increased collocation became

more efficient than finite differences after some crossover

point at one to four significant figures of accuracy.

Accuracy was obtained by measuring the error of the solution

at the nodes of the mesh used for the finite element and

finite difference statement of the problem (Ref 10:_23-334).

The comparison of Galerkin and least squares methods

to collocation shows that collocation is always faster for
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equal accuracy with less of an advantage as finer grids are

used. The reason for the speed advantage of collocation was

attributed to its narrower band matrix than Galerkin or

least squares. This advantage was true even though the sym-

metry properties of the Galerkin and least squares coeffi-

cient matrices were used to reduce solution time by half

with the Cholesky decomposition for band matrices (profile

method). For a given mesh size collocation was never more

accurate than the other methods. The main conclusion of

the article is that collocation is the best method of the

four for the class of problems examined (Ref 6:335-337).

Measurement of Accuracy

The measure of accuracy used for comparisons in this

study is the maximum absolute error. The maximum error

encountered in all points tested becomes the error of that

solution. Due to the uniform convergence properties of MWR,

the maximum error is expected to decline with more terms in

the trial solution as finite difference error declines with

more mesh points (Ref 8:263-265,273). The fractional error

has no such expectation. Fractional error is a measure of

the number of significant figures in the MWR or finite dif-

ference solution. Significant figures are equal to -log

(error/exact solution) where error/exact solution is frac-

tional error (Ref 6:333). Since fractional error depends

on the value of the exact solution as well as the error at a

point, it will not be used to compare efficiency between

methods.
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Fractional error has been used by Houstis et.al. as a

characteristic of solution comparisons. After finding the

crossover point for finite difference and collocation a

characteristic number of digits is assigned to describe the

solutions at that point. At the crossover point, maximum

error and execution time are approximately equal with collo-

cation obtaining greater accuracy in less time after the

crossover point. The number of digits assigned to the

crossover point is -log(maximum error/maximum solution size).

This number of digits is clearly an optimistic estimate of

the number of significant figures in the solution since the

fractional error of the ma:imum error is computed at the

largest value of the exact solution instead of where the

maximum error occurred (Ref 6:333).

The absolute error must be measured at a number of

points in the domain to find the maximu, error. Houstis et.

al. measured the error at the nodes or intersections of the

finite element grid (Ref 6:332). These are the mesh points

of finite difference for a grid of the same size. Since no

finite element mesh is used for the problems considered

here, the finite difference points will be used for compar-

ison. For collocation these points are the same as the

collocation points. Then for an N term expansion of the MWR

trial solution, the error will be measured at N equally

spaced points, initially. A more extensive investigation

of the MWR solutions will be made at 99 points throughout

the domain of the problem to check the error obtained at

the finite difference mesh points.
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Steadv State Problem

The solution to the steady state problem is shown in

Figure 1. The exact solution is shown in comparison to the

one term and two term collocation solutions. The conver-

gence of the MWR solutions to the true solution is rapid

with successive expansions approximating the true solution

more closely.

In order to compare the maximum error of the MWR and

finite difference solutions, 20 different solutions were

computed for each MWR method and finite differences. Each

MWR method used solution expansions ranging from one to 20

terms. The finite difference solutions ranged from one to

20 mesh points. The results of maximum error and execution

time measurements are tabulated in Table I and Table III

through Table V in Appendix A. The results are also pre-

sented graphically in Figures 2 and 3.

Figure 2 shows the maximum absolute error obtained by

measurement at the finite difference mesh points for all

four methods compared. The one term expansions of MWR were

compared with the true solution at one point. The two term

expansions were compared at two points and so on. The

maximum error is plotted against execution time for 100

executions of each solution. Each symbol represents a dif-

ferent solution with a different number of terms or mesh

points. The one term and one mesh point solutions are at

the top of each line. The three MWR methods performed

similarly. Galerkin was slightly faster than least squares
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-3ano collocation in the maximum error range around 10 to

10 with least squares approaching Galerkin below 10 - .

Collocation continues slower than Galerkin or least squares

at smaller errors. The finite difference solutions shown in

Figure 2 are much slower to a given maximum error than the

MWR methods for errors less than 5x10 - 4 . A characteristic

number of digits accuracy can be assigned to the crossover

point for this problem at between 10- 3 and 7x10 - 4 maximum

error. Since the maximum solution size for this problem is

.071, the digits of accuracy for the crossover is between

1.8 and 2.0. This accuracy is a very optimistic estimate

of the accuracy of the solution. For a point other than the

crossover different accuracies require widely varying runningf
4 times by different methods. At maximum error of 7x10 - 5 or

3.0 digit accuracy, finite differences takes twice as long

as the MWR methods.

Figure 3 shows maximum error plotted against execution

time for 100 executions when maximum error is determined by

sampling the MWR solutions at 99 points. The absolute

error of each solution was measured at the same 99 equally

spaced points throughout the domain. The finite difference

comparison at the mesh points of Figure 2 is included for

reference. Although the maximum error measured for MWR

solutions of a few terms is a few to several times higher

for 99 points than for the finite difference points, the

difference is small for solutions of 10 terms or more. The

efficiency and relative efficiency of the MWR solutions is

42



0- Finite Differences

0- Galerkin

&- Least Squares

+ - Collocation

CD-

C
0

4j

0

X

)-0

C
5 -4

'I,1
C

-4I I I

0.00 0.24 0.48 0-72 0.96 1.20
Execution Time - Seconds

Fig 3. Steady State Error at 99 Points

43



almost the same for measurement at the 99 points as the

finite difference points.

The Houstis et.al. article found collocation to be

faster to a given accuracy than Galerkin or least squares

for MWR applied on finite elements (Ref 6:335-337). In this

formulation of MWR on the whole domain and for this problem,

Galerkin is faster than either least squares or collocation.

Also least squares is faster than collocation. The numeri-

cal integration used for Galerkin and least squares in MWR

on finite elements and the resulting coefficient matrix may

be the reasons for the different behavior. As indicated in

the Houstis article, the numerical integration for MWR on

finite elements requires evaluation of the integrand at nine

places where collocation requires evaluation of the residual

at only four points (Ref 6:336). The resulting equations

produce coefficient matrices which taKe longer to solve for

Galerkin and least squares than collocation (Ref 6:336).

MWR on the whole domain as used in this study has neither

of these two hindrances. The integrals are done analytically

to develop recursion relations for matrix formation. The

resulting matrices have all non-zero elements and are all

solved by the same method so solution times are close to

the same. Galerkin and least squares were observed to be

more accurate for a given mesh size than collocation by

Houstis et.al. (Ref 6:336). Apparently the greater accuracy

of Galerkin and least squares results in less error for a

given number of terms in the expansion than collocation.
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Then the very close solution times result in smaller maximum

error for Galerkin than for collocation.

Table I shows some of the values presented graphically

in Figure 2 and Figure 3 for collocation. The maximum abso-

lute error decreases with more terms in the trial solution

until a minimum error is reached at 11 or 12 terms. After

that point the error fluctuates and gradually grows.

Galerkin and least squares exhibit similar behavior at

eight or nine terms in the trial solution for minimum error.

This behavior occurs well below the region of comparison of

Figures 2 and 3. Galerkin and least squares error are

tabulated in Table III and Table IV of Appendix A. All

three solutions attained minimum errors of 10- 1 2 or less.

There are three possible explanations for the behavior

of maximum error. The first explanation of convergence to

some solution other than the true solution is not valid.

If the three methods converged to the wrong solution, maxi-

mum error would decrease to some minimum value and not grow.

A second explanation is low accuracy of the Gaussian elimi--

nation solution of the simultaneous equations. A successive

over-relaxation iterative method was used to improve the

Gaussian elimination solution (Ref 15:126-129) . A relative con-

vergence test of 10-.2 0 was used to test for convergence of

the iterations. For collocation the successive over-relax-

ation gave greater error for some trial solutions and failed

to yield a solution for others. For Galerkin and least

squares, however, the method worked. Several solution con-

stants changed value in the 10th to llth significant figures.
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TABLE I

Error and Time for Collocation on the

Steady State Problem

Maximum Absolute Error

Number of Terms At Time for
in the Collocation At 99 100 Executions

Trial Solution Points Points (seconds)

1 1.68E-3 9.69E-3 .18
2 7.09E-4 8.06E-4 .21
3. 4.87E-5 7.06E-5 .25
4 3.23E-6 3.38E-6 .30
5 1.96E-7 2.38E-7 .37
6 7.73E-9 7.93E-9 .45
7 4.08E-10 4.65E-10 .53
8 1.16E-11 1.18E-11 .62
9 5.35E-13 5.90E-13 .71

10 1.46E-14 1.88E-14 .85
11 3.77E-15 6.77E-15 .98
12 5.77E-15 6.55E-15 1.11
13 8.44E-15 9.77E-15 1.25
14 4.22E-15 5.33E-15 1.42
15 6.22E-15 7.11E-15 1.62
16 6.22E-15 6.66E-15 1.81
17 4.85E-14 4.88E-14 2.01
18 2.29E-14 2.49E-14 2.23
19 5.77E-14 5.99E-14 2.45
20 1.38E-13 1.38E-13 2.65

Note: E-X means 10-
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The maximum errors of the solutions in Tables III and IV

remained the same to three significant figures yielding

Tables III and IV again. Since the growth in the error was

up to two orders of magnitude, poor accuracy of the Gaussian

elimination does not explain the behavior of maximum error.

The last explanation of the maximum error behavior is the

trial functions themselves. Babuska et.al. find these

trial functions numerical unstable for the MWR in their

study of stability in optimal trial functions (Ref 14:241-

245). By studying the solution of the simultaneous equa-

tions based on these trial functions, they conclude they are

unstable for seven or more terms in the trial solution. The

solutions with more than seven terms have errors which

increase, not decrease. Babuska et.al. conclude these trial

functions should not be used for computer solutions.

Transient Problem

The transient problem was solved by the reduction to

ordinary differential equations method of MWR and by an

explicit finite difference method. The MWR on the whole

domain produces a series soluti.on that may be evaluated for

any time or position in the domain. The explicit finite

difference method, however, produces the solution for a

succession of times up to the final time considered. For

the comparison of the methods in this study, only the maxi-

mum absolute error at specified dimensionless times will be

used.

47



Several points within the space domain were used to

compare an approximate solution and the exact solution. The

finite difference solutions were found for 10 to 100 mesh

points in increments of 10. The finite difference mesh

points were used to determine the maximum absolute error of

that solution. The MWR solutions used successively more

terms and solutions with 1 to 20 terms were calculated. The

MWR solutions were compared at the collocation points for

the steady state problem. Since most of the finite differ-

ence solutions in the transient problem were compared at

more than the maximum number of collocation points, all the

MWR solutions will be compared at 99 equally spaced points

for a comparable search of the domain.

The solutions were compared at three times. Figure 4

shows the exact solutions at t = .05, .10, and .15. Note

that the solution for t=.05 is close to zero for a larger

fraction of the domain than the others and represents the

earliest time response of the solution. The solution for

t=.15 represents the latest time response when the solution

is close to the steady state solution.

The maximum absolute error for the three solutions is

plotted as a function of solution execution time in Figures

5 through 7. All solutions were executed 100 times for a

more accurate measurement of the time. Only collocation

and Galerkin MWR methods were us 3alerkin was always

faster to a given accuracy than collocation as in the

steady state problem. Both the Galerkin and collocation
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methods were faster to a given accuracy than explicit finite

differences after a crossover point where MWR and finite

differences achieved equal accuracy in equal time. The

crossovers occurred at accuracies of 2.5 to 3.2 digits based

on the maximum absolute error and maximum solution size of

1.0. The crossovers represent very optimistic estimates of

accuracy. All methods showed improved accuracy for t=.10

and t=.15 over t=.05. Collocation improved the most and

finite differences the least. The crossover point for

collocation and finite differences changed from 3.2 digits

at t=.05 to 2.6 digits at t=.15. The Galerkin and finite

differences crossover remained more nearly constant by

changing from 2.7 digits at t=.05 to 2.5 digits at t=.l5.

Collocation lost more of its advantage over finite differ-

ences at the short solution time t=.05 than did Galerkin.

An explanation for the better showing of Galerkin over

collocation is the complex eigenvalues found for colloca-

tion. The Galerkin matrices in the eigenvalue determina-

tion part of the solution process were symmetric, while the

collocation matrices were not. For collocation complex

eigenvalues were first found for the five term expansion of

the trial solution and expansions for more terms also had

complex eigenvalues. Since only-the real part of a complex

eigenvalue was used as an approximation in the solution,

some accuracy was lost. Accuracy was also lost for the

Galerkin method due to negative real eigenvalues. These

negative eigenvalues produced positive exponential functions
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of time which grew instead of decayed with time. Since the

negative eigenvalues produced functions which were not a

physically real, decaying transient solution, those eigen-

values were set to zero. The negative eigenvalues first

occurred for the 11 term Galerkin solution and for all

solutions with more terms. Thus, the effect on accuracy

of the negative eigenvalues for Galerkin occurred at finer

approximations than the complex eigenvalues for collocation.

An explanation for the poorer showing of both MWR

methods at the t=.05 time is the shape of the true solution

at that time. The true solution there is close to zero for

a greater fraction of the domain than the other two times.

Since the true solution is close to zero for that longer

fiaction of the domain, it is harder to approximate by a

polynomial. More terms and more solution time are required

for a given accuracy or maximum absolute error.

Table II shows the maximum absolute error and execu-

tion times for collocation solutions at the three dimension-

less times. Note that the maximum absolute error stops

decreasing and starts growing for solutions of 13 or 14

terms. The error for Galerkin also grows starting at 13

terms in the solution as shown in Table VI of Appendix A.

Since the same space trial functions were used for the solu-

tion expansions in the steady state and transient problems

and since similar growth in error occurred in the steady

state problem, this growth in error can be attributed at

least partially to the numerically unstable trial functions
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TABLE II

Error and Time for Collocation in the

Transient Problem

Maximum Absolute Error

Number of Terms Time for
in the 100 Executions

Trial Solution- T=.05 T=.10 T=.15 (seconds)

1 7.69E-2 1.39E-2 1.21E-2 .90
2 2.76E-2 1.75E-2 1.15E-2 1.34
3 2.17E-2 6.15E-3 1.92E-3 2.11
4 6.66E-3 1.67E-3 7.68E-4 3.07
5 2.79E-3 5.55E-4 1.63E-4 5.22
6 2.24E-3 7.37E-5 3.89E-5 8.13
7 4.57E-4 3.69E-5 8.09E-6 10.69
8 1.95E-4 5.33E-6 8.71E-7 14.76
9 3.88E-5 1.71E-6 3.01E-7 19.46

10 1.51E-5 3.87E-7 1.88E-8 26.89
11 4.91E-6 8.98E-8 8.86E-9 34.20
12 1.24E-6 2.07E-8 7.07E-10 38.95
13 4.52E-7 4.13E-9 8.43E-10 47.26
14 7.82E-8 1.40E-8 8.83E-9 60.19
15 1.16E-7 6.38E-8 3.87E-8 72.17
16 5.35E-7 2.67E-7 1.60E-7 82.23
17 2.48E-6 1.53E-6 9.33E-7 -
18 9.07E-6 2.06E-6 8.51E-7--
19 3.74E-5 2.36E-5 1.44E-5--
20 2.35E-2 4.34E-3 8.OOE-4--

Note: E-x means 10 X
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(Ref 14:241-245). No iterative improvement of the final

solution was attempted, however.

An implicit finite difference method was used to see

if the solution time could be shortened from the explicit

2method. using a time step, ht = h x' where ht is the time

step size and where h is the space mesh spacing to minimizex

the finite difference error, 0(ht) + 0(h2) (Ref 14:108).

The resulting execution times were several to 100 times

greater than for the explicit solutions with slightly higher

maximum absolute error. The largest increase in solution

times occurred for the finest mesh spacing where the largest

full matrices were solved for a new temperature more times

than the smaller matrices for larger mesh sizes.

No direct comparison with the Houstis et.al. article

is possible for the transient problem since that article

treated only steady state problems on finite elements

(Ref 6). It is interesting to note that the Galerkin

method proved faster to a given accuracy than collocation

for both problems in this study while collocation was fastest

for the MWR on finite elements of the Houstis et.al. article.
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V Conclusions

In this chapter conclusions of the investigation of

MWR on the whole domain and finite differences for solution

of the heat equation will be presented. Also, recommenda-

tions for the improvement of the MWR methods used in this

study and application of finite element methods to heat

problems of axial symmetry will be presented.

Two, one dimensional problems of heat transfer were

solved by the MWR on the whole domain of interest and by

finite differences. One problem represented steady state

heat transfer and the other transient heat transfer. Both

problems used Dirichlet boundary conditions where the value

of temperature was specified on the boundary. MWR methods

for the steady state problem were collocation, Galerkin,

and least squares. The least squares method was not used

for the transient problem since it complicated the solution

process. The finite difference formulation was implicit

for the steady state problem and explicit for the transient

problem. The integrals of the Galerkin and least squares

methods were evaluated analytically to obtain recursion

relations for MWR solution. All solutions were compared with

the true solution to obtain maximum absolute error.

Conclusions and Limitations

The Galerkin method was fastest to a given accuracy

or maximum absolute error of the methods evaluated. The

crossover point for Galerkin and finite differences where
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both had equal accuracy in equal time occurred at 1.8 to 2.0

digits of accuracy for the steady state problem and 2.5 to

2.7 digits for the times evaluated in the transient problem.

The Galerkin method had greater accuracy than finite dif-

ferences in equal time after the crossover point. The

digits of accuracy are an optimistic estimate of the number

of significant figures in the approximate solution based on

the maximum absolute error occurring in the whole domain

and the maximum value of the true solution. The digits of

accuracy indicate that finite differences is only faster for

rather crude accuracy and Galerkin and the other MWR

methods are faster for greater accuracy. The speed margin

is sizeable. The time required to increase one digit of

accuracy beyond the crossover point for the steady state

problem is half as long for Galerkin as for finite differ-

ences. The Galerkin method is the best of methods evalu-

ated to use for problems of this type when accuracy greater

than two or three digits is required.

Some limitations to the conclusion of the previous

paragraph must be noted. First only Dirichlet boundary

conditions were used for the two problems evaluated. Other

boundary conditions may be evaluated by finding trial func-

tions which satisfy them or by minimizing the boundary

residual along with the differential equation as shown in

Eq. (10) of Chapter II. However, the conclusion of the

last paragraph cannot be extended to other boundary condi-

tions without some evaluation of problems with the other
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bow: ary conditions. Another limitation is constant thermal

conductivity. Constant thermal conductivity throughout the

whole domain was assumed to reduce the heat equation to a

dimensionless form. Problems involving varying thermal

conductivity should be evaluated to see if Galerkin is the

best method. A third limitation is the one dimensional

cartesian coordinate geometry of both problems evaluated.

Before assuming that Galerkin is always fastest for axial

symmetry or two dimensional problems on the whole domain

problems in those geometries should be evaluated. The last

limitation is the method of integral evaluation used for

the Galerkin and least squares methods. If a numerical

rather than an analytical integration were used, the solu-

tion times and, therefore, the speed advantage of those two

methods could change.

A major drawback of the Galerkin and other MWR methods

on the whole domain in the problems evaluated is the poly-

nomial trial functions. These trial functions were seen to

be numerically unstable for solutions with 10 or more terms.

The maximum absolute error increased not decreased for

solutions with more than 10 terms or so. If heat generation

terms complicated the shape of the temperature distribution,

more terms could be needed in the MWR solution to approxi-

mate it. If more than 10 terms were needed, MWR might be

limited to low accuracy and be slower than finite differ-

ences. A new approach is needed to avoid the drawback of

the linearly independent but numerically unstable polynomial

trial functions.
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Recommendations

The orthogonal collocation method could solve the prob-

lem of numerical instability (Ref 3:357). It is recommended

for steady state problems. Orthogonal collocation uses

trial functions composed of orthogonal polynomials and

collocation points defined by the roots of the highest

order polynomial. The method can be made to fit other bound-

ary condition than Dirichlet and is valid for planar, cylin-

drical or spherical geometry. The method can solve problems

in terms of the values of the function approximated at the

collocation points. This ability allows great flexibility

as well as computational ease in problem solution. Ortho-

gonal collocation has been shown to be as fast as the other

MWR methods for a given accuracy (Ref 3:97,100).

As an example consider a one-dimensional cylindrical

symmetry steady state heat transfer problem where tempera-

ture varies only with the radius:

V 2U(r) + g(r)U(r) = f(r) (85)

where U(r) represents dimensionless temperature and where

g(r) and f(r) are functions defining heat generation. The

problem can he formulated as symmetric in r:

V 2U(r) + g(r 2)U(r) = f(r 2 ) (86)

Then the trial solution for such a problem can be iorivulated

for Dirichlet boundary conditions at r=l as
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2 N
U(r) = U(1) + (l-r ) Z aiPi (r (87)

i=l

where a. is an undetermined constant and Pi (r2 ) is an

orthogonal polynomial. The Pi-1 (r2 ) are defined starting
2

with a power series in r as

1

f w(r2 )P (r 2)Pi(r 2)r dr = Ci6ij (88)

0

for j=l,2,...,i-l where w(r 2 ) is a weight function, 6.. is
the Kronecker delta function, and C. some constant. Thus each

1

polynomial in the trial function of Eq. (87) is made ortho-

gonal to the others with the weight function, w(r 2). The

roots of the polynomials may be found for a given weight

function. Weight function (l-r 2 ) or 1 may be used for this

probiem. The polynomial roots for these weight functions

have been tabulated (Ref 3:99,101-103).

For solution the trial function must be converted to

an ordinary polynomial and matrices found to relate the

values of temperature to the derivatives in the problem.

SneP r2  2Since PNI(r2 ) is a polynomial of degree N-1 in r , then

the trial function can be represented as a polynomial of

degree N in r 2

N+ 1 N1 2i-2
U(r) = Z d.r ' (89)

i=l

where d. are new constants. Evaluating the derivati',c and
1

Laplacian of temperature at the collocation points plus

r=l for the N+l collocation point yields matrices to relate

temperature and derivatives to the constants d.
1
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I - -

N+l 2i-2
U(r.) = l x. d. (90)Si= 1  3

dU N+I dr2i-2

dr E dr d.1(1=l1 (91)i=l d
r. r.

2 N+I 2 2i-2
VU = Vr d. (92)

r. i=l r.1
J 3

dU
In matrix form Eq. (90) is U = Q d, Eq. (91) is -r C d,

and Eq. (92) is V2U = D d. The derivative and Laplacian

can now be formulated in terms of the temperature at the

collocation points:

du -dU-- C Q U (93)

V2U D Q- U (94)

The expressions of Eq. (93) and (94) may be substituted

directly into a differential equation such as Eq. (86) to

produce a matrix problem for temperature at the collocation

points. Then the temperature at the collocation points may

be used to solve for the constants, di, in the trial solu-

tion. An additional condition needed for solution of Eq.

(86) is the temperature at r=l or U(rN) = U(1). Other

boundary conditions can be solved for U(rN+l) and included

in the solution for temperature (Ref 3:100-101).

Another method which should be evaluated in future

research is the MWR on finite elements for probleri of nxial

symmetry. MWR on finite elements has been shown to be
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faster to a given accuracy than finite differences for

steady state problems similar to the heat equation in two

dimensions (Ref 6:336). Finite elements methods use piece-

wise continuous trial functions of a fixed number of terms.

Accuracy is increased by increasing the number of elements

covering the domain of the problem and not the number of

terms in the trial function.

Problems of axial symmetry use volume finite elements

defined in the two variables r and z. Axial symmetry is

described by a cylindrical coordinate system where tempera-

ture or boundaries do not vary with the angular coordinate

of the cylindrical coordinate system. The domain of the

problem is then divided into finite element rings with

cross section and trial functions described by r and z

coordinates of the cylindrical coordinate system. For inte-

grations involved in the MWR the volume of the finite ele-

ment ring must be used. Various shape elements may be used

with the appropriate trial functions to element shape and

order of the polynomial trial function used. The trial

solution is expressed as in orthogonal collocation as a

function of parameters at specific nodes or points on the

element:

U = E N. a. (95)1 1

where U is the function approximated such as temperature,

N. are the trial functions called shape functions in finite1

elements dependent on the shape and order of polynomial
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aproximation, and where a. are the nodes determined by ele-1

ment shape and shape functions (Ref 13:119-120,148-177).

The MWR statement of the steady state heat transfer

problem minimizes the combined residual of the differential

equation and boundary conditions of second and third kind

to produce a matrix statement for solution of the nodal

parameters, ai. When the matrix equations are solved the

solution is complete. The matrix equations are of the form

H a + f = 0 where H is obtained by numerical integration

of the integrals involving a and where f is obtained from

integrals not involving a (Ref 13:424-426). The method of

combining contributions to the H matrix from each finite

element of the domain results in a banded, sparse matrix

which is faster to solve than the full matrices of MWR on

the whole domain (Ref 13:14-15).

The transient heat transfer equation may be treated in

the same manner by MWR to produce ordinary differential

equations in time. The matrix formation is then of the

form C A + H a + f = 0 which may be solved by methods simi-

lar to those used for the transient problem in this study.

A step by step recurrence calculation for ai similar to

finite difference methods for the transient problem is also

possible and more general (Ref 13:569). In the step by step

method shape functions are chosen to describe the variation

of a from the beginning to the end of a time element,
n+l

a = N. a.. The MWR is applied to the whole matrix
-- i=n
formulation of the problem with the time derivatives acting
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on tho shape functions. The resulting equation is then

reduced to yield a recurrence relationship for a n+l as a

function of a . Thus the solution can be produced in a

step by step basis as for finite differences (Ref 13:570-572).

Evaluation of the finite element methods described here

should provide a better and more general test of MWR for

heat transfer problems of axial symmetry.
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Appendix A: Error and Solution Time Tables

This appendix contains tables summarizing the maximum

absolute error and solution time for MWR and finite differ-

ence solutions of the steady state and transient heat

transport problems.
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TABLE III

Error and Time for Galerkin on the
Steady State Problem

Maximum Absolute Error

Number of Terms At Finite Time for

in the Difference At 99 100 Executions

Trial Solution Mesh Points Points (seconds)

1 3.03E-4 8.35E-3 .18

2 1.49E-4 3.04E-4 .20
3 1.87E-5 2.57E-5 .23

4 5.22E-7 5.88E-7 .27

5 3.30E-8 3.74E-8 .30

6 6.19E-10 6.40E-10 .36
7 2.89E-11 3.21E-11 .42

8 8.10E-13 8.14E-13 .46
9 5.43E-12 5.52E-12 .52

10 2.29E-11 2.50E-11 .58

11 3.80E-11 3.80E-11 .67

12 4.60E-11 4.75E-11 .75

13 3.72E-11 3.78E-11 .81

14 1.71E-10 1.74E-10 .91

15 1.69E-10 1.81E-10 1.00

16 6.45E-11 6.68E-11 1.12

17 6.13E-11 6.34E-11 1.25

18 1.36E-10 1.41E-10 1.37

19 9.86E-11 1.09E-10 1.47

20 1.03E-10 1.17E-10 1.62

Note: E-x means l0 - x.
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TABLE IV

Error and Time for Least Squares on the
Steady State Problem

Maximum Absolute Error

Number of Terms At Finite Time for
in the Difference At 99 100 Executions

Trial Solution Mesh Points Points (seconds)

1 1.68E-3 9.06E-3 .19
2 1.42E-3 1.68E-3 .20
3 7.80E-5 7.90E-5 .24
4 1.33E-6 1.85E-6 .28
5 9.60E-8 9.87E-8 .35
6 1.33E-9 1.68E-9 .39
7 7.53E-1 7.84E-11 .49
8 9.94E-13 1.06E-12 .55
9 4.56E-13 4.84E-13 .65

10 8.58E-13 8.77E-13 .75
11 3.96E-12 3.98E-12 .86
12 2.71E-11 2.73E-11 .97
13 1.01E-11 1.03E-11 1.09
14 2.76E-11 3.14E-11 1.23
15 1.29E-1 1.31E-11 1.35
16 3.94E-11 4.12E-11 1.53
17 7.41E-11 7.48E-11 1.71
18 2.09E-10 2.40E-10 1.84
19 6.44E-1 6.73E-11 2.05
20 3.65E-11 3.77E-11 2.22

Note: E-x means 10- x .
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TABLE V

Error and Time for Finite Difference Method
on the Steady State Problem

Maximum Absolute Error

Number of Terms At Finite Time for

in the Difference 100 Executions

Trial Solution Mesh Points (seconds)

1 1.68E-3 .26

2 7.09E-4 .23

3 4.09E-4 .26

4 2.64E-4 .32

5 1.81E-4 .36

6 1.35E-4 .43

7 1.02E-4 .47

8 8.17E-5 .54

9 6.58E-5 .60

10 5.46E-5 .66

11 4.58E-5 .76

12 3.90E-5 .84

13 3.37E-5 .89
14 2.92E-5 .98

15 2.58E-5 1.09
16 2.28E-5 1.20
17 2.04E-5 1.32

18 1.83E-5 1.41
19 1.65E-5 1.53

20 1.50E-5 1.67

Note: E-x means 10- x .

71



TABLE VI

Error and Time for Galerkin in the
Transient Problem

Maximum Absolute Error

Number of Terms Time for

in the 100 Executiions

Trial Solution T=.05 T=.10 T=.15 (seconds)

1 5.39E-2 1.45E-2 6.18E-3 .91

2 1.92E-2 9.86E-3 5.65E-3 1.33

3 6.60E-3 1.56E-3 3.76E-4 1.99

4 1.19E-3 2.25E-4 1.34E-4 2.96

5 4.52E-4 6.98E-5 1.08E-5 4.57

6 1.09E-5 3.OOE-6 1.53E-6 7.03

7 1.43E-6 2.41E3-6 3.38E-7 9.51

8 7.01E3-7 9.92E3-8 1.32E-8 12.18

9 4.82E-7 5.53E-8 7.65E-9 16.01

10 3.84E3-7 6.81E-9 2.24E3-9 20.32

11 5.76E-8 5.45E-9 1.98E3-9 24.80

12 1.70E3-7 2.07E-9 4.44E-10 31.10

13 3.95E-8 1.35E-9 2.21E3-10 38.47

14 8.13E3-7 4.04E-8 2.80E-9 42.69

15 1.90E3-7 1.26E-8 9.78E-10 50.99

16 4.18E3-7 2.66E-7 1.68E-9 59.39

17 6.27E-7 1.71E3-7 4.20E3-8 68.25

18 5.75E-7 1.41E-7 4.62E-8 77.08

19 5.94E-7 1.41E-7 3.0013-8--

20 1.11E3-5 5.83E-6 3.09E3-6--

Note: E-x means 10-s.
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TABLE VII

Error and Time for the Explicit Finite Difference
Method in the Transient Problem

T=.05

Time for
Number of Maximum 100 Executions

Mesh Points Absolute Error (seconds)

10 1.10E-2 .69
20 2.74E-3 1.77
30 1.28E-3 3.96
40 7.30E-4 7.66
50 4.72E-4 13.45
60 3.31E-4 21.59
70 2.44E-4 32.81
80 1.88E-4 47.00
90 1.49E-4 65.45

100 1.21E-4 88.21

Note: E-x means 10- x . T is the
dimensionless time variable.

TABLE VIII

Error and Time for the Explicit Finite Difference
Method in the Transient Problem

T=.10

Time for

Number of Maximum 100 Executions
Mesh Points Absolute Error (seconds)

10 5.13E-3 .85
20 1.41E-3 2.69
30 6.53E-4 6.73
40 3.73E-4 13.71
50 2.41E-4 24.62
60 1.69E-4 40.46
70 1.25E-4 62.44
80 9.58E-5 91.17
90 7.59E-5 127.52

100 6.16E-5 ---

Note: E-x means 10-x. T is the
dimensionless time variable.
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TABLE iX

Error and Time for the Explicit Finite Difference
Method in the Transient Problem

T=.15

Time for
Number of Maximum 100 Executions
Mesh Points Absolute Error (seconds)

10 3.65E-3 1.02
20 1.02E-3 3.55
30 4.69E-4 9.25
40 2.68E-4 19.57
50 1.73E-4 35.56
60 1.21E-4 58.99
70 8.96E-5 91.43
80 6.88E-5 135.1.3
90 5.45E-5 ---

100 4.43E-5

Note: E-x means 10-x. T is the
dimensionless time variable.

74



Appendix B: Comruter Proqrams

This appendix contains the computer programs for the

steady state and transient heat transfer problems. Both

the MWR and finite difference solutions are included.
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Stead~y .'t t Corruter Prorrom

1 :C IT=1,3
L G %=I, 20

N I I~~-

1 CONCTINUE
END
SUDRQU TZIE ~ CCE-: RS k'.P , !DiIMI CRi T

DIMENS7ON g(20,2ol0) Xi(2_0) 1Y(20)

PRINT*,"l
PRINT4,"
PRINT*,"
PRINT*," ll; R SOLN FOR ",N, 1 1 7ERM E'XPANSION

C PICK IETHOD
lF (:CRTT.E0.1) G0 TO 1
GO 11O 20
P :IN T* COLLOCATION
CA~LL CCL(C0ZF:,.S,N 7 ,IDIMl)

20 IF (ICRIT.E3.2) GO TO 2
GO To 30

2 PRI;NT*," GALLERKIN
CALL GAL(CO;EF,RS,N.IDIM)

30 IF (:CR:T.EQ.3) 00 TO 3
GO TO 40

3 PRINT*," L:VAST SGUARE:S
CALL L(OF~,,DM

C PRINT 3E5ULT OF CAL'
40 P-,,(NT*," RIG,-HT SIDE VECTOR=

DO 10') K-K=1,N

5 CONT'NaJE
C FIND SOLN CONSTANTS

iDGT= 8
CA~LL LE-GT1F(COEF,ML,,N, D'ii,RS, IDGT7iKAREAIER)

IF (IER.NE.34) GO TO 50
PRINT*," EXACT * ETHCD SOJN CONSTANTS=
PRINT*,(C" A(",J,")= " 7RS(J) ,J~1 ,N)
SORCONz 1.OE-8
Dc Go J 1FN

60 XI(j)= RS(J)

76



i'--1.0

50 CoLTINUE

R:"T*, SOLIN CONSTANTS

L-Z.7S7 CC=F(CCEFMRSTID,SIDIM

C FILL RS ECO
DX= 1.01(N+1)
DO 1 jIN

1 RE(j'i= DX*J
C FILL CCEF MATRIX

DO 2 =,
DO 2 !:1?N
X= DX,*j

2 CCNTINUE
RETURN

4 END

DI?.ENSAGN CCEFI-(DIXID~lM1,RS(IDIM)
C FILL RS VECTOR

DO I J=1,N
I RS(Jh= 1.0/UJ+2)*(J+3))
C FILL CEF MAT RTX

DO 2 J=1,N
DO 2 I=I,N

COE(J~)=(1.0*(( (T+)*I)+(I*(i-1) ))/(J+I)) +(?.0/(J+I+2))

2 CONTINUE
END
SU3P0UT.NE SCOFRSN IDIM)
DT- .ENSI0N COEF(IDIM,IDIM),RS(IDiM)

C FILL RS VECTOR
DO I J=1,N

1 RS(J)= l.o - (1.0/((J+2)*(J+3)))
C FILL COEF MATRIX

DO 2 J=l,N
DO 2 I=I,N
IT' ((I+J).EOG.3) GO TO 11
GO TO 2O

11 COEF(J,!I)= .* J(- ~j(+ *~ +))(I(>) /IJ1

2 + (i.0*((>-,(!I))+i.0+(J*(J+l)))/(J+i.+i)) (1.0/(+J+3))
3 -(2.0/(I+J+2))

4 (1.((JJ-)II+))(*I- J*J ))(i-2
GO0 TO 90

20 : - ((+J).Eg.7) GO TO 21
GO TO 30
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4k CE~(JI)~(:.o*(J*(J-l)*I*cI-.))/(I+J-3)) -(2.0/(I+J+Z))

4 .M (~+.0*J-~f/Ji') -(1.O/(I+j+3))

30 COE7(j,l)= (1.0*(j*(J-l)*I4(-1))/(I+J-3)) - (2.0/Ii+J+4'))

(i.Oi(I(i~))+.O+J*(J1))/(2I+1) +(1.0/I!+J+3))

S 0 CE71IJTiNUE

RETURN
END
SUBROUTINE C0Xl(RS,Xr IDIM)
DI-ENSION RS(TDIMi)

C COMPARE 7, X:E3r' :10 1N7S/COLLOCAT ION PigINTS
PRINT*,. ERRiOR OF ;R~ AT MEHPOINTS OF 7D OR COLLOCATION POINTS"
ITOL=0
10.=N
DX=1 .0/(N+1)
GO TO 50

30) IF (770L.ED0-) GO TO 31
GO TO 40

31 M=99
DX= .01
PRINT*," ERRIRS F*R W-DLE REION A7 99 POINTS '

G0 To 50
40 IF (ITOL.EG.2) RETURN

50 ERR~v= 0.0
F7RRM= 0.0

XE0.0
XM1F= 0.0

DO 1 J=1 1M

Y=DX* (N()SN1.0)) -X

DO 10 !I1,N
10 YM'= YM +(R(*X*)X*i+))

ERR =IY-Yi1
FERR=ERR/Y
IF (AB3S(ERR).GT.ERRM) GO TO 2
GO TO 5

2 ERRM= ABS(ERR)
XriE= X

5 IF (A5S(FERRN.GT.E?RM) GO TO 3
GO TO 3

3 FER3M= ASS(FERR)
XMF =X

6 IF (iTOL.EO.2) GO TO 1

I CONTINUE
ITOL= 17OL + 1
PRINTW, NAX ERROR= ",ERRM,' AT Xz '.XME
PR 1NT*, " MAX-W- 10N DN- E ?C R= --E3-x l, AT X="'P
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50J TO 30

X= N~-1
C F:LL FD VECT03 AS RIGHT SIDE

D,,,' 1.0/N
Z0 1 J=1,M

C FIl'' CCEF MATRIX
DO 2 J=lM
Dc 2 !=Idl

2 CE:(J 1): 0.0
DIAG 2.0 - (1.0/(N**2))
DO 3 J=1,M

3 CGE(J,J)= DIAG
IF (N.EG.2) CI0 TO 10
M2= N-2
DO 4 J=2,M2

COE,-(J,KlX)= -1.0
.K?: J+1

4 CCE--FJ,KP)= -1.0
CzCEF(1,2)= -1.0
C0O71FiM,MZ)= -1.0

C PRTNT RESULTS
10 PRINTf, "

PR:NT*,"
PRINTIF"
PRTNT*,' FINV-E DIFFERENCE SOLN FOR ",M," MESH POINTS
PRINT ," RIGHT STIDE V7CTCR
PR:VT*, C" j5",)=",FD(j),J=I,M)

PRINT*," COE:F MA~TRIX=
DO 12 J=I,M

12 PRINT*,(C" C(,,""I'=",COEF(JFI) ,I=1,M)
C CALCULATE SOLN USING THIS iMP'LICIT SCHEME

IDGT= 8
CALL LEGTir(CDEF -,ML;,M.IDTIM,FD~rDGT1 WKAREA.)IER)
PRINT*,
PRINT*," FINITE D:FFERENCE SOLN: I

PIRINT*WlC FD(ll1 J1 ')= ",FJ(J) ,J= ,N)
PRINT*," MESH PGINT LOCATIONS+

DO 13 I=I,M
13 WVKA EA(I)= DX*1

PRINT*,(" X(", I,")= ",WKAREA(I),1=1,11)
PRINTW,
RETURN
END
SUBROUTIN\E COMPrD(FD,N,IDIM)
D 1iIENS I ON F (I D'I .)

C COMPARE ACCL'?PCY OF FD AT M1ESH POINTS
PR:NT*P" ERROR~ OF FD AT MESH POINTS=
DXz 1.0/N
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'1= N-I
R"';= 0.0

FEJ:7RR= 0.0
XME= 0.0
XMF= 0.0
DO 1 J=1,M
X= DX*J
Y= (S:N(X)/SlN(l.0)) X
ER.R= Y- FD(J)

IF (AEDS(E).T.ERRM) GO TO 2
GO TO 5

2 ERR ; A2S(ERR)
XME: *X

5 IF (A3S(FERR).GT.FEzRRM) GO TO 3
GO TO 6

3 F;7RM= ABS(FERR)
XM.1F: X

6 PR:NT*,' FOR X= ",X," ERROR= "',ERiR," ANiD FRA CTI!ON ERROR= ",FERR
I CONTINUE

PRINT*," MAX E:RROR= ",ERRrM," AT X= ",XME
PRINr*, M~AX FRACTIONAL ERROR= ",FER.Ril," AT X= *,XMF

END
SU3ROUT TNE SCR(A,XI,XD,Y,4KN T DIM,ALP,CONV)
DIMEN~SION CIIII X(Dr~),(II),K DM

C
C SUCCESSIVE OVER REL AXAT ION FCR AX=Y
C XI IS AN INITIAL GUESS AND ALP IS A SOR PARAM
C

DO I I=1,N

C COUNT iTERATIONS FOR MIN OF 10 AND MAX OF 1000

C AL5ORYHM FORSOR

DO 9 J=I,N
9 O=XO(I)~ - APAIJ*K)/(,)

IF GOE~I TO 2
Iml= I-1
DO 10 J~1,Im1

10 XOCI)= '/4(1) - (AL *A(:,J)*XO(J)/A(I.I))
20 CONTINUE
C CONVERGENCE TEST

ICONV= 0
DO 50 I=1,N
IF (A65SUXO(I)-WK(Il/XO(i)).GT.CONV) ICONV= 1
W.K(I)= XO(I)

50 CONTINUE
1;: (ICCNV.Eg.0) 20 TO 80
IF CITC.GE'.h:00) GO TO 70
:TC= ITC+1
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GO TO 8
70 S03r k," C T COw\YEc-:.D

80 IF7 (ITC.GT.10) GO T0 90
ITC= !TC+1
G TO S

so PIN7*,O SCR COWVEFRGED
*?ETUuiN
END
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Transient Computer ProGram

P:C*-.. Tl'Yri(INPUT,CIJTPLT,)
CMK..X AO(2OZ(2) LA:O1DA(20)

3-7-A(Z0- -0) ,3(20,20) K~CCO R(S00) ,RALFA(40) ,BETA(20)
1 (1'~~d0) 70,(Z 7,O) ,F:(100, 7)
EU ~ENCE (AL-A( ) RALFA( I) (AZ I~ I RZ( 1)

;D7..= 20
ID27M '2*IlM
IDj:,XS !DD J*TDIM2

1. = 100
DJ 5 jJ=1,3
T= .05 * JJ
DO 1 IC.7IT=1,2
DO 1 N=1,20
CALL ~O.ASN DM CI,,RLMAAF 1 EA~,Z

CALL MW-CC:'l (RRZ, LA, DA, I D MN, T)
I CONTINUE

DO 3 1:=1,10
N= 11*10

DT= (DX**2)/2.1
7(DT.C-E.T) 60 TO 10

!VAL= T/DT
!VAL= .7VAL+1
DT= T/IVAL
GO TO 30

t0 DT= T
C LOAD INTTIAL VALUES
30 DO 4 1=1,N
4 FD(I,!)= 0.0

PRINT*k, 1 1

PRINT *," I

PRINT*," FD SOLN --OR 11,N," MESH POINTS
DO 2 J=1,IVAL
CALL FDSO2'J(=D,AANrDT,VK, IDIMF)

2 CO0N', -N UE
PRINT*,(C" FD(I, I,I')= ",FD( 1,2), I~l,N)
CALL CCvPFD(FD,N,IDIMF,T)

3 CONTINUE
5 CONTINUE

END
SL2ROUTINE LAL7(A.B 1NIDIM)

C FILL A AND B MATRICES
DO I J=1,N
DO I I=1,N

2+((0(ICi)/(+l)
B(j~i)= (2.0/(J+i'+2)) -(1.0/(J+1+1))
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I-(1.0/(J+1+3))
C C.%T 1U
RETURN
END
ELBR9UTINE COLT(AuB,N, IDIM)

C F7LL A 'D 8 :"ATIX

D1 j=1.N
EO 1 I=1,N
X -: DX*J
IF (I.E0.1) GO TO 10
GO TO 20

10 A(JIlh -2.o)
GO TO 50

20 IF (iE.)GO TO 30
GO TO 40

30 A(J,1)= /'.0-(6.O*X)
GO TO 50

40 A(Juj)=(*(-*(*(-))-((i)(X(I))
50 ':(J,:)= (X**(I+I)) - (X**I)
1 CONTINUE

RETURN
EN;lD
SUB --OU TTN; ?NR SC!L(A ,B ,N, I DI M ICR I TZ, RRZ, RLAM DA, ALFA, BE TA,

I
CGO 'PL:4~ ALTA( :DI) Z( :DI,D LA.:DA( !DIM)
REAL :IID BIIDM W(DIS*ZIISAFIDM)
1 BETA( ID.TM) 1~~DIM) RRZ(ID:M,IolIM)

C COM1PUTE A AND 8 MATRICES
PRINT*,"
PRINTW' n

PRINTW,
PRINT*," M'NR SOLUTION FOR 11,N,' TERM EXPANSION
IF (ICRIT.Eg.1) G0 TO 10
GO TO 20

10 PRINT*," COLLOCATION"
CALL CGOLT(ABNyIDIM)
GO TO 40

20 IF (11CRIT.EG.2) GO TO 30
GO TO 40

30 PRINT*," GALLERKIN"
CALL GAL-T(A,E,,N,IDIM)

40 PRINT*," MATRIX A=
DO I J=1,N

1 PRINT*,( " ,~""I") ,(,IIIN
PRINT*," MATRIX B=
DO 2 J=1,N

2 PRINT*,(" (,,,,I"1"BJ,)IlN
C CALCULATE EIOENYALIJES AND EIGENVECTORS

IJOB= 2
CALL EIGZ F(A,IDIM,B,1DIM,N,IJBRALABETARZ,IDlil,:%, 11R ')
PRIN7*,* I
PRIN7Wl1 SOLUTION VALUES 1
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:F (-7-Tr(j).E7G.0.0) CO TO 100
COl T5 110

100 PUT, ETA(",J,')= 0.0

TK-ADA(J)= AL7gt(J)/3ETAt(J)
3 C51,47INUE=

P3:'T7*, " COM.PLEX EIOF ,"YLES=
PRINTO, ("...' ) ",LA DA(I) .1=1,N)

p- \.7 (;7A ELHNVALU7S:
PRII'4*, C"LR( ) T RLAXD( (I I I , N)
PRINIT*, CO?:'?L7X EIGENVEGORSa=
DO 4 ljzi,N

4 HR~T Y( ,J "I,) ,Z( J 1. ) ,I1 ,N)
C FO0R M R --AL E 1G E7N Y E CT ORS

CAL TCXX )UVF2N RZ DIMS)
C SETUP MATCES TO 'uALCU-'LiE EPICENVECTOR MULTIPLIERS

IF.(:07l:T.E-G.1) GO TO 200
GO TO 210

200 CA -L COLY(A,a;ETARRZ,N, IDIM)
GO TO 230

210 IF (:CT.79.') GO TO 220
GO T0 230

220 ZALL GALlj(A,BETA~nRZN, IDIM)
C SOLV.E SYOTZM FOR MULTIPLIERS
230 MSL"1

IDGT=8
CALL L"ELUT1(A,ML,1' iD'!",3ETA, IDCT,WK,E=R)
PRINT*," F-IR l.C. SO:.jTIO.N IER= 7,IER
PRINT*," A"L~ IESIRE

C SCALE 7TCENVECTORS BY MULTIPLIERS

DO 6 K=1,N
DO G I=1,N

B R(I) RRZ(l,K)*BETA(K)
RETURN
END
SUBRO'JTINE GA (AB ,RZNIDIM)

C FILL BETI MATRIX
DO I j=!,N

I BETP(j)= (2.0/(J+T) )-( I.Q/(J+ ).)-( 1.0/(J+3))
C FILL A MATRIX

DO 2 J=1,N
DO 2 K=I,N
A.(J,K)= 0.0

DO 2 I=1,N

I -'C 1 .0/(J+1+3) )))
2 CONTINUE
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C F:' 8ETA t.A 7R I Y
DO 1 -J= I,N

C :LL A MATRIX
DC 2 f=I,N

DO 2 K=1,N
A(j.K)= 0.0
DO 2 1I , N

CONT7iNU;E
RETURN
E ND
SUBROUTINE SC?!LNT(X,,TS,COJV)
P:E= 3.14!.'52'053G
TSG= 1.0-X
M=I

1 EX= (M**72)-(PIE**2)*T
ARG0= M*PIE*~X
TS= 7S0 - (2.0*SINRG/?:E*',*EP(EX)))
IF ((2.0/(P:E4Mr EXPEX)).LT.C0NV) RETURN

3 T50= TS
M= m+1
GO TO 1
END
SU23R'l-TlNE ' ST(XlTTi,RRZRLA.NDA, IDIM,N)

TMl= 1.0-A"
DO 1 11I,N
CT= 0.0
DO 2 J=i,N
IF (RLAi'DA(j).LT.0.0) G0 O 2^
IF ((LJ~)O.O.)00 TO 2
CT= CT+(R2Z(I7 j)iEX:"vP(RAMDA(J)*T))

2 CON~iNUE

ICON'TINUE
RET URN
END
SUE30UT171E RR0~Z ,RLA DAi,:DIM, N, T

CONV= .oE-:0
C COXLPAR-7 AT 7D POINTS

DX= 1.0/(N+1)
ERR 1= 0.0
FERRM= 0.0
XMF= 0.0

DO 1 I=1,N
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r . . \7( ',T-,COjNV)

F (A 3S( P L .E " GO TO 10
00] TO 70

10 E R. 5 S E ).
'A' E- X

20 - (A r l C) LTE 3IM Go To 30

GD TC 1
30 FER:= A D S F 2:)

X! :-= x
1 CONT7NUT

PRI'NT*., " 2C -
PR-.T:I ERC DRF C>-NTS AT T= ,

PR INT* "'A""~R AT X= ",XME
PRINjh*,N X.A:/ ATQ\.EDr rR AT X= ",XMF

c COVARZ AT SS POIN\TS

DX= .01
ERRN=0. 0

FERRiM=0.0
XtF0.0

DO 2 1=1,99
X= Dx*IL
CALL SC"L,T(MTTS, CCNV)
CAL ~'?T (X 7, 7: Z RL A D A D,.M N
ER2-R T M-T 3
FERR= ER.2IT S
-F (A S ~)GT. ER,'.) C-5 TO 50
GO TO G0

50 ER AES(7ERR)
XME: X

60 IF A2(E )T.Ei)GC TO 70
GO TO 2

70 FERR'1= ABS(FER
XmF= X

2 CONT I NI E
PRINT*,"
PRINT*," ERR7- =03 S9 POINTS AT T= ",T

PR I ': T* , E.UROR= ER AT X= ",XMiE
PRINT*," A FRACTIONAL ERROOR= ',FERRM,," AT X= ",Xi
RETURN
END

S C 0 Y hE Z D i N(,D C .K I DI , Z I I S

REAL Rz( ID: ,DI1M!) vRZ ( ATD1MS)

C STORE EiGOEN:.E-C70R9 AS RE,iLS AND CW-ECK FOR COMPLEX
C Eb'GENVE0T3:-i (XA~iC-" C-,'z :\ NL. PAV S) AND
C SET ONE 7:DYCD D THE 7cEA- PAT AND T.A'E OTHER
C TO THE P~GNAR ART (NO-12 CCOMPLTEX EOE\-',.ALLUES ARE
C TAKEN AS THE- 3EAL PA.3T ORAPFFROXIM.T:O.N)
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W CI1rUP.EZ.1) G0 TO 4
UCK= 0
f0 2 :=1.N

Z(;Z(,,) - RRZ I,J)
C FOR~ CC: ' EX EN]7YECTORS

(:. E.0 CO TO I
C MA,-: iGNA Y Pr T haJXT 7U3ENVECTGR
C AN3 E?(iP 73 FCL'IO 4NG E3ENYECTO.R

D.J 3 1I, N
:CFF= 2 +( -+:D*(-) *)

3 CC\TlNUE
M10i? I

4 ISKIP= 0
CCNTINJE
PR , 7f,, , RAL Ei-ENqVE-C7FRS= '

EC 10 >1I,N

RE T 03'

C CC > £LUT:6\ AT : ZSH POINTS
D:'z 0 */ (N+ 1
CCVz 1.OZ-10
ERX 0.0
FEU& 0.0
ME2= 0.0
XyF= 0.0
PRINTW,"
PRINT*," FD EP7,*3R COM.PARISION AT XME:SH POINTS

X=DXC * I1,

CAL.L SC iNT(XT,75,CONV)
ERR= FD(I.2) - TS
FER?<z ER?17S
IF (A3S(E i3).GT.ER3M) GO TO 10
GO TO 2.)

SC9'XEw: AB5 (FER?)
XVE= X

20 lF(A3S(E).OTFEM (W TO 30
00 TO I

SOLM'FE: AgS(IRR)

jVI=j



AX F3 A n-*FR~ F T

.0 -2 0* R
C C A T E N 77 KN G. N F D YC ;- O

,2'z(.1-" (Fr, 2, 1 ) + .0)) + (TI2*FD( I.

DO 2 1=2,N'
z*DCI,'2)z CR*(FD(l+,,)+FD(III) + (T'l,2R4FD(I , I

2 CONTINUE

C S:E* N-7; SCLU7TE-N I\Tt 7F CLD SGLUTICN
DO f- 11,N

4 FD(I,1)= F-D(iL,2)
RETURN
END
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